Neuropeptide FF (NPFF) analogs functionally antagonize opioid activities in NPFF2 receptor-transfected SH-SY5Y neuroblastoma cells.
نویسندگان
چکیده
To elucidate the mechanism of the cellular antiopioid activity of neuropeptide FF (NPFF), we have transfected the SH-SY5Y neuroblastoma cell line, which expresses mu-and delta-opioid receptors, with the human NPFF2receptor. The selected clone, SH2-D9, expressed high-affinity NPFF2 receptors in the same range order as mu- and delta-opioid receptors (100-300 fmol/mg of protein). The NPFF analog [D-Tyr1, (NMe)Phe3]NPFF (1DMe) did not modify the binding parameters of the mu- and delta-specific agonists [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin and deltorphin-I, respectively. 1DMe dose dependently inhibited 75 to 80% of the cAMP production stimulated by forskolin. Preincubation with 1DMe halved the maximal inhibition of N-type Ca2+ channels by opioid agonists. In the presence of carbachol, acting on muscarinic receptors to release Ca2+ from the intracellular stores, deltorphin-I and 1DMe enhanced this release. Preincubation with 1DMe reduced the maximal effect of deltorphin-I by 40%, demonstrating an antiopioid effect in this experimental model for the first time. By using peptides corresponding to the carboxyl terminus of the alphai1,2, alphai3, alphao, and alphas subunits of G proteins, which specifically uncouple receptors from G proteins, we demonstrated that mu-opioid and NPFF2 receptors couple to the four subunits assayed. The Ca2+ release from the intracellular stores by 1DMe resulted from the coupling of NPFF2 receptors with Galphao and Galphai1,2, whereas the coupling with Galphas reduced the antiopioid effect of 1DMe in the modulation of N-type channels. This SH2-D9 cell line now provides the opportunity to study the interaction between both receptors.
منابع مشابه
Neuropeptide FF-sensitive confinement of mu opioid receptor does not involve lipid rafts in SH-SY5Y cells.
Mu opioid (MOP) receptor activation can be functionally modulated by stimulation of Neuropeptide FF 2 (NPFF(2)) G protein-coupled receptors. Fluorescence recovery after photobleaching experiments have shown that activation of the NPFF(2) receptor dramatically reduces the fraction of MOP receptors confined in microdomains of the plasma membrane of SH-SY5Y neuroblastoma cells. The aim of the pres...
متن کاملPhysical association between neuropeptide FF and micro-opioid receptors as a possible molecular basis for anti-opioid activity.
Neuropeptide FF (NPFF) modulates the opioid system by exerting functional anti-opioid activity on neurons, the mechanism of which is unknown. By using a model of SH-SY5Y cells, we recently postulated that anti-opioid activity likely takes place upstream from the signaling cascade, suggesting that NPFF receptors could block opioid receptors by physical interaction. In the present study, fluoresc...
متن کاملOpposite Effects of Neuropeptide FF on Central Antinociception Induced by Endomorphin-1 and Endomorphin-2 in Mice
Neuropeptide FF (NPFF) is known to be an endogenous opioid-modulating peptide. Nevertheless, very few researches focused on the interaction between NPFF and endogenous opioid peptides. In the present study, we have investigated the effects of NPFF system on the supraspinal antinociceptive effects induced by the endogenous µ-opioid receptor agonists, endomorphin-1 (EM-1) and endomorphin-2 (EM-2)...
متن کاملShort communication Neuropeptide FF receptor modulates potassium currents in a dorsal root ganglion cell line
This study investigated the presence of neuropeptide FF (NPFF) receptors on F-11 cells, a hybridoma derived from rat dorsal root ganglia (DRG) and mouse neuroblastoma. Binding experiments revealed a low density (4 fmol/mg) of high affinity (0.5 nM) [3H]-EYF binding sites in these cells. The whole-cell planar patch-clamp technique showed that dNPA, a selective NPFF2 agonist, increased the voltag...
متن کاملInvolvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 67 3 شماره
صفحات -
تاریخ انتشار 2005